Endocytic Trafficking Routes of Wild Type and F508 Cystic Fibrosis Transmembrane Conductance Regulator□D
نویسندگان
چکیده
Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. F508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and F508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16°C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations F508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis.
منابع مشابه
Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.
BACKGROUND Deletion of phenylalanine-508 (DeltaF508) from the first nucleotide-binding domain (NBD1) in the wild-type cystic fibrosis (CF) transmembrane-conductance regulator (wtCFTR) causes CF. However, the mechanistic relationship between DeltaF508-CFTR and the diversity of CF disease is unexplained. The surface location of F508 on NBD1 creates the potential for protein-protein interactions a...
متن کاملAnalysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.
Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...
متن کاملDelta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression.
The most common cystic fibrosis transmembrane conductance regulator (CFTR) mutant in cystic fibrosis patients, Delta F508 CFTR, is retained in the endoplasmic reticulum (ER) and is consequently degraded by the ubiquitin-proteasome pathway known as ER-associated degradation (ERAD). Because the prolonged interaction of Delta F508 CFTR with calnexin, an ER chaperone, results in the ERAD of Delta F...
متن کاملModulation of Protein Kinase CK2 Activity by Fragments of CFTR Encompassing F508 May Reflect Functional Links with Cystic Fibrosis Pathogenesis†
Deletion of F508 in the first nucleotide binding domain (NBD1) of cystic fibrosis transmembrane conductance regulator protein (CFTR) is the commonest cause of cystic fibrosis (CF). Functional interactions between CFTR and CK2, a highly pleiotropic protein kinase, have been recently described which are perturbed by the F508 deletion. Here we show that both NBD1 wild type and NBD1 DeltaF508 are p...
متن کاملBuilding an understanding of cystic fibrosis on the foundation of ABC transporter structures.
Cystic fibrosis (CF) is a fatal disease affecting the lungs and digestive system by impairment of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). While over 1000 mutations in CFTR have been associated with CF, the majority of cases are linked to the deletion of phenylalanine 508 (delta F508). F508 is located in the first nucleotide binding domain (NBD1) of CFTR. This mutation is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004